\equiv # Hidden Lake Management Plan Feasibility Study September 8, 2014 # Goals of the Study: - Identify alternatives that will reduce the net maintenance cost for managing Hidden Lake - Maintain or improve water quality in Hidden Lake and Boeing Creek - Identify capital projects or strategies that could be incorporated in the City's next 6-year Capital Improvement Program (CIP) to achieve the above plan objectives # Existing Large Stormwater Facilities # Timeline- History of Hidden Lake # **Aerial History** #### Problem: Rain Example Scenario: November 2012 was a particularly rainy month #### Problem: Material Mobilization Heavy rainfall caused high water flows in Boeing Creek to mobilize material from hillslope failures and channel erosion # Problem: Deposition Mobilized slope and channel material was then deposited in Hidden Lake # **Current Solution: Dredging** In 2013, the City of Shoreline dredged 3,800 cubic yards (~ 380 dump trucks) of deposited slope and channel material from Hidden Lake. # Removal & Cost of Dredging #### **Evaluation Components** - Qualitative review of existing conditions in Hidden Lake including biological and geomorphologic components - Review of documents pertaining to previous conditions and studies - Functional ecological assessment of different management alternatives using "credit/debit" methodology #### Public Outreach - Two public meetings (May 6 and July 1) - Three presentations to Parks Board - Public survey advertized at the lake/public meetings/City webpage. #### Some of the primary points of feedback: - Private property concerns of parks users unknowingly trespassing onto private property - Addressing the source of material - Flow control upstream from uncontrolled stormwater - Not adversely affecting water quality or wildlife #### Preferred Alternatives at Lake | Alt | Brief
Description | One-time
Cost | Annual
Cost | Total Cost
over 10 years | Pros | Cons | |-----|----------------------------------|------------------|----------------|-----------------------------|--|--| | 1 | Status quo
(keep
dredging) | \$0 | \$54,000 | | Remains a lake Provides open water habitat for larger cutthroat trout Waterfowl habitat | Surface Water Utility continues to incur cost of sediment removal Corps permit likely needed for continued dredging. Such federal permitting would be expensive and may ultimately be denied. | | 2 | Cease
dredging | \$0 | \$2,500 | | Surface Water Utility reduces long-term maintenance costs Maximizes wetland and riparian areas (ecological lift compared to lake) Higher functioning wetland area would form | Loss of aesthetic associated with open
water Outlet still requires some periodic
maintenance/repair and replacement | | 3 | nemove dum | | | | Eliminates the long term maintenance and liability of the existing dam (including costs of repair and replacement) Sediment removal needs and associated costs would be reduced or eliminated Higher functioning wetland and stream area would be created (i.e. closest to restoration of site) Potential grant funding available for dam removal | Culverts under Innis Arden Way would
need to be monitored for blockage by
debris during extreme events | | 4 | Lower outlet | \$160,000 | \$2,500 | | Increase in wetland areaExtension of stream channel would likely
form over time | All drawbacks of Alternative 2 (cease
dredging), through with a smaller
footprint | | - | OF | | | | | Marginal benefits for substantial cost | #### Alternatives – Upstream Flow Control | Alt | Brief
Description | One-time Cost | Annual
Cost | Total Cost over 10
years | Pros | Cons | |-----|----------------------|----------------------------------|----------------|-----------------------------|---|--| | 5 | | Varies – likely
>\$10,000,000 | Varies | | Can be done independent of Boeing Creek and Hidden Lake Will begin to occur without additional public cost via redevelopment (flow control is required by the City for all new projects) Can be dispersed throughout the City | Many large facilities or hundreds of | #### Staff Recommendation Staff recommends a phased management approach: - Phase 1: Immediately implement Alternative 2: Cease Dredging and abandon the project until permitting, easements, and funding are allotted, - 2. Phase 2: Execute Alternative 3: Remove Dam which follows the Parks Board recommendation. # Questions?